ABSTRACT

This report provides the results of a cultural resources survey of the proposed Pineview Road Industrial site and extension of Shop Road located on the south side of the City of Columbia. The site is approximately 500 acres in size, with 199 acres having been previously surveyed for a proposed farmer’s market that was never built (Adams 2007). The remaining acreage was the focus of the current investigations. As a result of the cultural resources survey, seven archaeological sites and five isolated finds were recorded. No architectural resources were encountered. All of the sites have been heavily disturbed by tree farming, cultivation, and erosion and are recommended as not eligible for the National Register of Historic Places (NRHP).
ACKNOWLEDGEMENTS

We would like to thank Eric Burke and Jay Smith of CDM Smith for their assistance during this project, as well as Larry Brazell and Jack Morin from East Richland County Public Service District. Field crew included Justin Byrnes, Daniel Upchurch, Lisa Pittman, and James Stewart. We appreciate their hard work.
TABLE OF CONTENTS

ABSTRACT .. i
ACKNOWLEDGEMENTS ... ii
TABLE OF CONTENTS ... iii
LIST OF FIGURES .. iv
LIST OF TABLES ... iv

I. INTRODUCTION ... 1

II. ENVIRONMENTAL CONTEXT ... 5

III. CULTURAL CONTEXT .. 7
 PREHISTORIC OVERVIEW ... 7
 Paleoindian Period .. 7
 Archaic Period .. 7
 Woodland Period .. 9
 Mississippian and Protohistoric Periods ... 11
 HISTORIC OVERVIEW .. 13
 Colonial Period ... 13
 National Period .. 15
 Postbellum and Modern Period .. 17

IV. METHODS .. 19
 BACKGROUND RESEARCH ... 19
 FIELD METHODS .. 19
 LABORATORY ANALYSIS ... 20
 CURATION ... 20
 NATIONAL REGISTER OF HISTORIC PLACES (NRHP) EVALUATION 21

V. RESULTS AND RECOMMENDATIONS ... 23
 38RD1389 ... 24
 38RD1390 ... 26
 38RD1391 ... 26
 38RD1392 ... 30
 38RD1393 ... 32
 38RD1394 ... 32
 38RD1395 ... 35

VI. CONCLUSIONS ... 37

REFERENCES CITED .. 39

APPENDIX A: SPECIMEN CATALOG
LIST OF FIGURES

Figure 1. Aerial View of the Pineview Industrial Park and Alignment of the Shop Road Extension .. 2
Figure 2. Location of Proposed Pineview Industrial Park Showing Previously and Newly Identified Archaeological Sites and Resources ... 3
Figure 3. General View of Project Area Conditions .. 4
Figure 4. Meriwether’s Map Showing Property Ownership in the Congaree Area of South Carolina, circa 1759 ... 16
Figure 5. Site 38RD1389 Sketch Map with the 1940 County Highway Map Inset .. 25
Figure 6. Photograph of 38RD1389 Showing Damage from Landscape Tree Extraction 27
Figure 7. Sketch Map of Site 38RD1390 .. 28
Figure 8. Sketch Map of Site 38RD1391 .. 29
Figure 9. Sketch Map of Site 38RD1392 .. 31
Figure 10. Sketch Map of Site 38RD1393 .. 33
Figure 11. Sketch Map of Site 38RD1394 .. 34
Figure 12. Sketch Map of Site 38RD1395 with 1916 Soil Survey Inset ... 36

LIST OF TABLES

Table 1. Identified Sites within the Study Area .. 23
Table 2. Identified Isolated Finds .. 23
I. INTRODUCTION

This cultural resource survey was conducted in preparation for the construction of a proposed 500-acre industrial park and extension of Shop Road. The work was performed by New South Associates on behalf of CDM Smith to comply with Section 106 of the National Historic Preservation Act, as amended, as well as the National Environmental Protection Act (NEPA).

The proposed Pineview Industrial site is located on the south side of the City of Columbia. It is bounded to the southeast by Longwood Road, to the northeast by railroad tracks, to the northwest by parcels along Pineview Road, and to the southwest by parcels along Bluff Road. The proposed alignment of the Shop Road extension begins at the current end of Shop Road and heads south-southeast to Longwood Road (Figure 1). Figure 2 shows the locations of previously recorded and newly recorded archaeological sites on the property, as well as the location of nearby National Register of Historic Places (NRHP)-eligible properties.

The northern two-fifths of the property consists of a tract that was surveyed by New South Associates (Adams 2007) for a proposed State Farmer’s Market. Two sites were identified (38RD1318 and 38RD1319). Site 38RD1318, a late historic scatter, was determined to be not eligible for inclusion in the NRHP, while 38RD1319, an Early Woodland scatter, needed further assessment. Subsequent testing determined that this site was also not eligible (Adams and Warhop 2007). This 199-acre tract was abandoned for the location that currently contains the new State Farmer’s Market along U.S. 321 in Lexington County. The remaining approximately 300 acres is either owned by East Richland County or by the Long Branch Wholesale Nursery, although a small wooded section at the south end is owned by Wildlife Action, Incorporated. The nursery property is primarily in open fields containing a wide variety of planted landscape trees. The East Richland County property is primarily a hay field (Figure 3).

The work was conducted between February 4 and 12, 2013 by New South Associates. Natalie Adams served as Principal Investigator and Field Director. She was assisted by Justin Byrnes, Lisa Pittman, Daniel Upchurch, and James Stewart.

This report is divided into six chapters: Chapter II presents an environmental overview; Chapter III presents the cultural background of the area; Chapter IV discusses methodology; Chapter V presents the results and recommendations; and Chapter VI provides conclusions. Appendix A is an inventory of artifacts collected during the survey.
Figure 1. Aerial View of the Pineview Industrial Park and Alignment of the Shop Road Extension

Source: ESRI Resource Data
Figure 2.
Location of Proposed Pineview Industrial Park Showing Previously and Newly Identified Archaeological Sites

Source: USGS Fort Jackson South, South Carolina Quadrangle
Figure 3.
General View of Project Area Conditions

A. Long Branch Wholesale Nursery

B. East Richland County Property
II. ENVIRONMENTAL CONTEXT

The project area is situated in Richland County, which lies in two physiographic provinces: the Piedmont Plateau to the northwest of the "fall line" and the Sandhills to the southeast. The project area is located below the area of rapids and therefore occurs just below the Fall Line. In the Fall Line region, major physiographic and geologic subdivisions occur. Along the Fall Line, the resistant crystalline rocks found in the Piedmont meet the more easily eroded sedimentary rocks of the Coastal Plain. Because of the difference in resistance to erosion, there are many rock outcrops that create rapids along the major drainage (Kovacik and Winberry 1987:18). The rapids impair water travel beyond this point. As a result of this concern with water travel, a number of early historic towns (such as Camden, Granby, Saxe Gotha, etc.) were located in these areas (Jones 1971; Mills 1972 [1826]: 157). The location of these early towns below the rapids facilitated trade between Charleston and the backcountry, since boats from Charleston could deliver and receive goods at these towns. The presence of the Fall Line also strongly influenced prehistoric occupation since its location between two major ecotones could allow exploitation of a greater diversity of resources.

In the project area, elevations range from 130 feet on the banks of Reeder Point Branch to 180 feet near the railroad tracks. Reeder Point Branch drains into Mill Creek, which ultimately empties into the Congaree River.

The dominant surface geology of the Congaree River Valley is composed of alluvial river terrace formations, which consist of a mature sequence of Pliocene, Pleistocene, and Holocene age terraces. These alluvial terraces extend about three or four miles east of the Congaree River channel and overlie the older marine terrace formations. Bluff Road, appropriately named from being located along the bluff of the Congaree River floodplain, is located just southwest of the tract. Soils in the project area consist of well-drained Norfolk, moderately well-drained Goldsboro, poorly drained Rains, and very poorly drained Johnston series soils (Lawrence 1978).

Two major forest types characterize vegetation in the area: the longleaf and loblolly pine communities (Frothingham and Nelson 1944:19–21). These communities consist primarily of pine with several species of hardwoods including gum and oak (Braun 1950:285–286). Currently, the study area primarily contains open fields either in planted landscape trees or cut hay.

During the prehistoric period, there were a number of climatic changes that affected the types of vegetation that were present in the project area (Anderson and O'Steen 1992). This vegetational sequence is summarized here.
Between 12,000-10,000 B.P. (the time of initial human occupation), the northern hardwoods, which include oak, hickory, beech, birch, and elm, replaced the spruce/pine boreal forests of the Full Glacial period in the region north of Columbia (Delcourt and Delcourt 1985; 1987). South of Columbia and across much of the Southeast, this hardwood canopy was probably in place earlier, possibly throughout most of the previous glacial cycle (Delcourt and Delcourt 1983; 1985; 1987). In this area, the late Pleistocene/Early Holocene appears to have been a relatively stable region of oak–hickory vegetational communities.

The climate during the prehistoric period went through a number of changes — primarily from a cold, xeric climate to a climate with warmer summers and colder winters, as well as increased precipitation (Watts 1980). As moisture increased, the climate began to approximate modern conditions.

It was not until the mid–Holocene, from about 8,000-4,000 B.P., that the southern pine communities began to emerge in the Sandhills area due to moister conditions. It was also during this period that extensive riverine swamp environments emerged (Davis 1983; Delcourt and Delcourt 1985, 1987; Knox 1983). As the oak–hickory forests diminished and pine forests increased, nut masts became more concentrated and isolated. This probably had an effect on settlement and foraging strategies. These pine forests and the associated climatic conditions remained in place throughout the remainder of the prehistoric and historic periods.

Historic accounts of the flora of the area are provided by several sources. In 1826, Robert Mills stated that the quality of lumber in the area was excellent:

“It is no uncommon thing to find trees of this description girthing six or seven feet. Besides the poplar, walnut, maple, and various species of the oak, there are the peach, plum, cherry, pear, quince, and apple; besides the native grapes, and various nuts and melons (Mills 1972 [1826]: 617).”

The modern climate is temperate and is usually characterized by mild winters and warm summers. Rainfall measures from 46-48 inches a year. The annual distribution indicates that July is the wettest month with October and November as the driest. The summers are warm and long with temperatures reaching 90 degrees Fahrenheit or higher on an average of 49 days, and they reach 100 degrees Fahrenheit or more two or three days a year. Winters are mild and temperatures are as low as 32 degrees Fahrenheit on 60 percent of the days (Lawrence 1978).
III. CULTURAL CONTEXT

PREHISTORIC OVERVIEW

PALEOINDIAN PERIOD

The Paleoindian period (12,000-10,000 B.P.) is archaeologically expressed by the presence of fluted and unfluted, lanceolate projectile points (Clovis, Suwannee/Simpson, and Dalton), side scrapers, end scrapers, and drills (Coe 1964; Michie 1977; Goodyear 1982).

The Clovis occupation in the Southeast is believed to span 11,500-11,000 B.P. Smaller fluted points and unfluted lanceolates such as the Simpson and Suwanee types replaced the Clovis in the subsequent 500 years. The last phase to represent Paleoindian occupation is the Dalton horizon, dating to 10,500-9,900 B.P. (Goodyear 1982).

The traditional view of Paleoindian settlement has been that it was a highly mobile strategy affiliated with the exploitation of megafauna, which is a view that persists into some current models of settlement (Kelly and Todd 1988). However, Anderson (1989a) proposed that Paleoindian colonists found key areas and used them as "staging areas" for subsequent population expansion. While evidence for the exploitation of Pleistocene megafauna in South Carolina has been documented (Goodyear et al. 1989), it is unclear just how dependent they were on these resources. Many researchers believe that subsistence choices in the Dalton phase included a variety of plant and animal foods. In fact, some believe that the appearance of the Dalton point signifies a change from hunting Pleistocene megafauna to Holocene species, primarily deer (Morse 1973; Goodyear 1982).

Most of the reported Paleoindian sites consist of surficial finds of lanceolate points, with very few having any well-preserved contexts. Attempts are being made to model late Paleoindian site formation using regional and local data on climate, hydrology, and sedimentology (Brooks and Brooks 1988; Goodyear et al. 1989).

ARCHAIC PERIOD

The Early Archaic period (9,900-8,000 B.P.) is typically regarded as an adaptation to the environmental warming during the post–Pleistocene (Griffin 1967; Smith 1986). As opposed to the forms present during the Paleoindian period, Early Archaic points are notched and sites are defined by the presence of the Taylor side-notched points, Palmer/Kirk corner-notched, and...
bifurcate forms (Coe 1964; Chapman 1985; Goodyear et al. 1979). These point types are much more abundant than the previously discussed Paleoindian types, indicating that an extensive regional Native American population was in place by the tenth millennium.

It should be noted that the Taylor point type developed from its discovery at the Taylor Site in adjacent Lexington County (Michie 1966). These points are similar to the side-notched Bolen points of Florida (Bullen 1958:42) and the Big Sandy points of Alabama (DeJarnette et al. 1962:48) and Tennessee (Lewis and Kneburg 1961:38) and probably have a similar chronological placement (Michie 1992:223).

Based on research conducted at two sites in North Carolina's Haw River Valley, Claggett and Cable (1982) proposed that changes in technology from the Paleoindian to the Early Archaic Periods reflect changes in settlement organization in response to post-Pleistocene warming. They argued that the resource structure would have become increasingly homogeneous throughout the Early Archaic. The settlement strategy emphasized residential mobility rather than logistic mobility, which would be manifested in an increase in expedient tools or situational technology.

The Middle Archaic period (8,000-5,000 B.P.) is characterized by stemmed points including Kirk Stemmed, Stanly, Morrow Mountain, and the lanceolate Guilford. Typically, the Morrow Mountain and Guilford types are better represented in the South Carolina record.

Sassaman (1983) suggested that Middle Archaic people were very mobile, perhaps moving residences every few weeks, which fits Binford's (1980) definition of a foraging society. Binford proposed that foragers had high levels of residential mobility, moving camps often to take advantage of dispersed, but similar resource patches. He believed that differences in environmental structure could be traced to large-scale climatic factors and further noted that a collector system could arise under any condition that limited the ability of hunter-gatherers to relocate residences. During his work in the Haw River area of North Carolina, Cable (1982) argued that postglacial warming at the end of the Pleistocene led to increased vegetational homogeneity, which encouraged foraging.

Sassaman's (1983) "Adaptive Flexibility" model suggested that this homogeneity allowed for a high degree of social flexibility, which allowed them to pick up and move when needed. This mobility did not allow them to transport much material, which alleviated the need for elaborate or specialized tools to procure, and process resources at locations distant from camp.
The Fall Line area of the Congaree River Valley is noted for large, multicomponent sites that include impressive Middle and Late Archaic assemblages. The ecotonal properties of the Fall Line made this area attractive to multiple visits over a long period of time.

It has been noted, however, that there is a high degree of variability in site size and density, which is believed to reflect functional differences, duration of habitation, or possibly group size. For instance, Anderson (1979:236) found that Middle Archaic components were located in the floodplain and upland locations. However, the greater diversity of floodplain assemblages suggested to him that habitation took place along the water's edge and that upland knolls such as the Manning Site (38LX5) were used for hunting and butchering tasks. Typically though, upland sites assemblages had limited diversity and density, matching the Middle Archaic pattern of short-term extractive activities.

The Late Archaic period (5,000-3,000 B.P.) has been described as a time of increased settlement permanence, population growth, subsistence intensification, and technological innovation (Smith 1986). The Savannah River Stemmed projectile point characterizes the period as well as the technological development of fiber tempered pottery known as Stallings (Stoltman 1974). Stallings pottery (5,000-3,100 B.P.), and the later sand tempered Thom’s Creek series (4,000-2,900 B.P.), share many formal and stylistic similarities and have a great deal of chronological overlap. The first use of freshwater shellfish in the region corresponds with the development of fiber tempered pottery in the Coastal Plain (about 4,500 B.P.). However, shellfish procurement and pottery use did not occur above the Fall Line until after 3,700 B.P. (and freshwater shell midden sites are only found in the Savannah River Valley). Piedmont and Fall Line inhabitants used soapstone-cooking tools (heating stones, and later, bowls), which explains the late adoption of pottery (Sassaman et al. 1990; Sassaman 1993). In the fall line region, Thoms Creek pottery is heavily grit tempered rather than the sand tempered found in the Coastal Plain. In terms of temper, it closely resembles later Deptford series pottery, while having classic Thoms Creek surface treatments.

In the Fall Line area, early investigations noted that the occupation of floodplain sites began to diminish after the Late Archaic period as sandy knolls and ridges such as Manning and 38LX5 became increasingly used locations of long-term, repeated habitation (Anderson 1979; Goodyear 1975). This is believed to reflect changes in fluvial systems with sea level rise and possibly rainfall patterns (Sassaman and Anderson 1995).

WOODLAND PERIOD

The Early Woodland period (3,000-2,450 B.P.) is characterized by Refuge (3,000-2,600 B.P.) and Deptford (2,800-1,500 B.P.) potteries as well as Gypsy, Small Savannah River, and Badin projectile point types. A compact, sandy or gritty paste and a sloppy simple stamped, dentate
stamped or random punctated decoration (Williams 1968) characterize the Refuge series. These wares are very similar to the preceding Thom’s Creek wares and Anderson et al. (1982:265) noted that the typologies are "marred by a lack of reference to the Thom’s Creek series" and that the Punctate and Incised types are indistinguishable from Thom’s Creek (Trinkley 1989:11).

Deftford, which first occurs in the latter portion of the Early Woodland, is characterized by a fine or coarse sandy past with surface treatments, which include Plain, Check Stamped, Simple Stamped, Cord Marked, Geometric Stamped, and Complicated Stamped (Williams 1968).

Brooks and Hanson (1987) noted significant changes in the density and distribution of upland tributary sites during the Woodland period in the Steel Creek area of the Savannah River Site. Brooks proposed that as tributary associated habitats became more productive with floodplain maturation, that upland tributary terraces became areas of more permanent occupation. For the Savannah River area, the data suggested to Brooks and Hanson that annual settlement ranges in the Early Woodland period were restricted to tributary watersheds (Sassaman et al. 1990:315).

Site 38LX5 indicates the presence of an extensive Deftford occupation. Unfortunately, the sandy acidic soils preclude statements on the subsistence base (Anderson 1979). This and other (38AK228–W, 38RD60, and 38BM40) interior or upland Deftford sites are strongly associated with swamp terrace edges. This environment is highly productive in nut masts as well as large mammals such as deer (Trinkley 1989). Probably the best data from a Deftford "base camp" comes from the Lewis-West site (38AK228–W) where abundant food remains, storage pit features, elaborate material culture, mortuary behavior, and craft specialization has been reported (Sassaman et al. 1990:96–98).

The Middle Woodland period (2,450-1,450 B.P.) is characterized by a continuation of the Deftford pottery tradition. The Deftford phase is part of the early-carved paddle stamped tradition, which was replaced by the northern tradition of wrapped paddle stamping during the Middle Woodland (Trinkley 1989:17). The Cartersville Series is restricted to the latter half of the Middle Woodland and is represented by check, linear check and simple stamped designs (Anderson and Schuldenrein 1985:340–347). There are only subtle distinctions between Deftford and Cartersville, suggesting that there may be a large amount of regional continuity or integration during this period (Sassaman et al. 1990:13). The Yadkin Series is also found in the Upper Coastal Plain and Piedmont and is characterized by heavy crushed quartz temper and has surface treatments of cord making or fabric impression (Coe 1964). Middle Woodland projectile points consist primarily of the Yadkin Large Triangular type (Coe 1964).
In the Savannah River region, seasonal or permanent base camps in prime resource locations are characteristic of the Middle Woodland settlement pattern. There were a wide range of wild food resources to be exploited from the bases as well as foods procured through short-term extractive forays (Hanson and DePratter 1985). There has been no evidence for cultivation of native or tropical plants for the region, thus far. According to Sassaman et al. 1990:13), settlement and subsistence organization was probably locally consolidated and at times consisted of relatively large aggregations of people, large-scale storage, and maybe some limited economic specialization.

The Late Woodland period (1,450-800 B.P.) is defined by the decline in stamped Deptford wares at around 1,500 B.P. Unfortunately, this period is difficult to delineate from the preceding Middle Woodland period or subsequent Mississippian period (Sassaman et al. 1990:14). Sites with Late Woodland or Mississippian occupations tend to contain small, triangular points such as the Caraway or Pee Dee (Coe 1964). In the Fall Line region, Brooks and Scurry (1978) have attributed Yadkin ceramics to a Late Woodland occupation, although a Middle Woodland occupation is more likely (Trinkley 1989).

Although Cartersville may extend into the Late Woodland period, archaeological surveys in the Piedmont have not found an appreciable amount of this ceramic type. Although the sparsity of Late Woodland ceramics may be due to the fact that there has been relatively little work in the Piedmont, it may be that Native American population areas and distributions may have a time depth not presently recognized. This area of the state may have been located in a buffer zone or hunting grounds, which were claimed by two groups, such as the Cherokee and Catawbas, during the historic period (see Trinkley 1989:24).

Stoltman (1974) observed in the Middle Coastal Plain that Late Woodland sites have a settlement pattern characterized by dispersed upland settlement, which he believed, may indicate the beginnings of slash and burn agriculture or intensification of upland resource procurement. In the coastal area, sites are also numerous, small, and dispersed which suggests a decrease in settlement integration over the Middle Woodland period. Contrasting this pattern, Piedmont sites are few and are dispersed along tributaries with little if any interriverine occupation (Goodyear et al. 1979; Taylor and Smith 1978).

MISSISSIPPIAN AND PROTOHISTORIC PERIODS

The Mississippian period (A.D. 1100-1640) is characterized by a sedentary village life, agricultural food production, and regionally integrated and hierarchically organized social, political, and ceremonial systems (Anderson 1989b). The presence Pee Dee pottery is characteristic of Mississippian sites. Pottery decorations include complicated stamping, usually in conjunction with reed punctation and/or nodes, pellets, or narrow rim strips below the vessel lip.
According to Smith (1978), the Mississippian populations had:

“A ranked form of social organization, and had developed a specific complex adaptation to linear, environmentally circumscribed floodplain habitat zones... The location of almost any Mississippian settlement within a floodplain habitat zone can, to a great extent, be generally explained as a result of two energy-capture factors:

1. The availability of well-drained, easily tilled, energy-subsidized natural levee soils suitable for horticultural garden plots.

2. Easy access to the rich protein resources of fish and waterfowl in channel-remnant oxbow lakes (Smith 1978:486, 488).”

Although Anderson (1989b) illustrated no mound sites near the vicinity of Columbia during the Mississippian period, DePratter (1989) described an undated mound, which he believed dated from the late Mississippian into the Protohistoric period on the lower Saluda River, just above its confluence with the Congaree River. It is possible, then, that the surrounding area contained a number of associated hamlets such as the deposits identified by Michie (1989).

The Protohistoric period began with the first European contact with Native Americans in the South Carolina region. The town and chiefdom of Cofitachequi is located on the Wateree River near the present town of Camden. This chiefdom was visited by Hernando DeSoto and his followers in 1540 and may have been preceded by members of the 1526 Ayllón expedition (Swanton 1922:31). Juan Pardo and his forces visited the town in 1566. Two years later, he established a small fort there in 1568, which was overrun by local Indians that same year. There was another small Spanish expedition that traveled through the area in 1627-1628, and the only Indian place name mentioned is Cofitachequi (DePratter 1989).

In 1670, Henry Woodward trekked from Charleston to Cofitachequi in an effort to seek peace with the chiefs he encountered on the way. Woodward referred to the chief as "Emperor" and there were reported to be 1,000 bowmen. Woodward convinced the Emperor to visit Charles Town, which he did in September of that year. He again visited the town in 1672 for unspecified purposes (Cheves 1897:194, 201, 388). Only one other reference to Cofitachequi has been found that post dates 1672. The reference, which dates to 1681, only mentions the town in passing (DePratter 1989).

In 1701, when John Lawson traveled through the area formerly occupied by the Emperor Cofitachequi and his subjects, the occupants consisted of a new group of people known as the Congarees (Lefler 1967:34).
The Congarees took part in the Yamassee War of 1715 and in 1716 over half of them were captured and sent to the West Indies as slaves (Swanton 1952:93). The others retreated westward and were subsumed under the Catawba Nation. Apparently, during this period, the Congarees also had a village on the Catawba trading path on the west bank of the Congaree River near what later became Fort Congaree.

HISTORIC OVERVIEW

COLONIAL PERIOD

In 1670, the English established a permanent settlement on the west bank of the Ashley River on Albemarle Point. The Lord Proprietors, who owned the colony until 1720, were in search of a staple crop that would provide great wealth in the mercantile system. By 1680, the settlement moved across the river to the peninsula formed by the confluence of the Ashley and Cooper rivers and became modern-day Charleston. This position provided better defense as well as a more healthful climate. In addition, it was convenient for settlers to bring in their crops to market since it was situated between two major rivers.

Early agricultural experiments included grapes, olives, silkworms, and oranges. However, none of these were very successful and a number of settlers became involved in the deerskin trade. Although profitable, it did not provide the proprietors with the wealth they were expecting. Nonetheless, the attraction of the deerskin trade with the Native American population drew a number of settlers to the backcountry. As a result, Fort Congaree was established in 1718 along the Cherokee Path near the Congaree River by the Board of Commissioners of the Indian Trade to regulate business with the Cherokee and Catawba (Meriwether 1940).

The fort stayed in use until 1722 at which time the Board of Commissioners of the Indian Trade decided to abandon the fort for reasons that are unclear. It may have been related to the 1721 Act, which allowed for private trade, or perhaps the Commons House felt that the operating expense was too great (Michie 1989).

It was not until around 1700 that South Carolinians had found their cash crops — naval stores and rice. With the success of rice as a profitable cash crop came the increased importation of African slaves (Wood 1974:59), indicating that there was a strong connection in the minds of the European settlers between rice production and African slaves (Terry 1981:78).

By 1720, African slaves comprised 65 percent of the total South Carolina population (Wood 1974:149). As the price of rice rose dramatically, African slaves began to flood into the South Carolina lowcountry. To offset the large slave population as well as provide a buffer between
the western Native American population and the populous coastal region, Governor Robert Johnson implemented a township plan in 1731 to bring in more European settlers to the South Carolina backcountry. Eight government-funded townships were created as a result, which included the Congarees — laid out in the vicinity of Fort Congaree. The 832-acre township, formally established in 1733, was renamed Saxe-Gotha in 1737 (Meriwether 1940).

Thomas and Patrick Brown, and later Robert Goudey, established a store near the Old Fort Congaree. This provided them with a post at which to trade with the Catawba and Cherokee Indians (Meriwether 1940). This trading post attracted a few settlers and by the mid 1730s, a number of other settlers began to arrive. In 1735, a group of Swiss settlers arrived, followed by a party of Germans in 1736. Some English settlers also began arriving in the 1730s, although most of them settled opposite the town across the Congaree River (Meriwether 1940). The store was apparently active in 1735 since local residents complained that it attracted Indians who were destroying their corn (Meriwether 1940:54).

To attract settlers, the colony paid their passage, granted them land, did not require them to pay quitrents for 10 years, and helped to provide them with provisions and other assistance. Settlers arriving in Saxe-Gotha were eligible for a town lot and 50 acres of land per family member. If the family was able to bring more land under cultivation, then the grant was increased (Kovacik and Winberry 1987:78). The town lots were laid off along the Congaree River and a Common was reserved to the west and north of the lots. The town developed along Russell Street, which is now known as Old State Road.

By 1748, about 200 settlers lived in the greater township, and by the 1750s, the Saxe–Gotha township was estimated to have about 800-900 settlers (Meriwether 1940:59–65). By 1762, there were enough settlers to spill over into the Dutch Fork area, located between the Saluda and Broad rivers, and support a store there. In addition, a number of English settlers began occupying land on the opposite side of the river in lower Richland County (Jones 1971:54). In addition, a number of people settled near the Old Fort in the 1750s and formed a short-lived town known as St. John's settlement (Michie 1989). In recent years, New South Associates (e.g. Adams and Cable 1997) examined portions of the short-lived town of Saxe-Gotha. Of particular interest was the presence of a redware pottery, which so far, has been found only at backcountry colonial period townships such as New Ebenezer in Georgia (Dan Elliott, personal communication 2002) and New Windsor (Tammy Forehand, personal communication 2002).

Meriwether’s (1940) history of the expansion of South Carolina shows property ownership along Raifords Creek (later Mill Creek) and the Congaree River in the year 1759, but the location of the Pineview Industrial Park appears to be just outside of his composite map (Figure
4). However, preliminary historical research indicates that this area was probably occupied by the 1760s when William Hay constructed a mill on Raifords Creek where it crosses Bluff Road. This is in the vicinity of what is now known as Adams’ Pond (Townsend 1973:142-143). In 1991, Mark Groover investigated the Thomas Howell Plantation located about three miles southeast of the project area on Mill Creek and archaeologically and historically documents life in the area during the eighteenth and early nineteenth centuries (Groover 1991). Interesting finds in this area included the collection of African-American and Native American made ceramics as well as the evidence of clothing home manufacture.

NATIONAL PERIOD

As the village of Granby grew up around the ferry landing north of Saxe-Gotha, the town was slowly abandoned. By 1805, a portion of the lots had grown up in trees while others were in cultivation. Granby was established as the county seat in 1785 and a courthouse was erected there. The town had eight stores, two blacksmith shops, a tavern, a gristmill, and the public market (Gallman manuscript, Manuscript Division, South Caroliniana Library, pp.137-138). However, with the development of Columbia, across the river, Granby died in importance and the county seat was moved to the town of Lexington (Central Midlands Regional Planning Council 1974:135–136).

Prominent families in lower Richland County, living in the vicinity of the project area during the late colonial and antebellum periods included the Howells, Hopkins, Westons, Raifords, Adamses, Hamptons, and Goodwyns. Mills Atlas of 1825 shows the feature “Hopkins’ Mill” where Mill Creek crosses Bluff Road, but nothing is shown in the project area. Hopkins’ Mill appears to be located where Adams Pond is shown on modern maps. Though lower Richland County was part of a larger political unit, the area developed independently and was characterized by large and prosperous cotton plantations along major creeks and the Congaree River floodplain. Richland County’s slave population, which centered in lower Richland’s developing plantation society, increased during the antebellum period. By 1840, the number of slaves in Richland County was 10,664, which represented the largest increase in any one segment of the county’s population in the pre-Civil War era. River and overland shipment of cotton and freight was replaced by rail transportation in 1842 giving rise to small hamlets such as Gadsden, Kingville, and Hopkins Turnout. All of these almost disappeared with the decline of cotton before 1930 (Lower Richland County Multiple Resource Area, NRHP nomination).
Figure 4.
Meriwether’s Map Showing Property Ownership in the Congaree Area of South Carolina, circa 1759

Note: Changes have been made in lines of some plats to bring them into a small scale map. Errors or frauds in early surveys about Jackson’s Creek make the locations of those plats approximate. Dates are those of surveyor’s certification; references are to volumes of Plats. Names in brackets indicate later owners; for references see adjoining plats or index.

Source: Meriwether 1940
The Columbia area saw a great deal of action during the Civil War. Although considered safe, the Union attacked the city in 1865. To deceive Confederate forces, Sherman's army was divided into two prongs – one, which headed for Charleston and one, which deceptively appeared to be heading for Augusta. Once Sherman's army entered South Carolina, refugees from Georgia and the Low Country flooded into Columbia. Although, it did not appear that Sherman's troops were headed for the capital, citizens were convinced that the city would be burned. However, only three days before the Union march into Columbia, Major Goodwyn "officially announced that on the basis of statements from the highest military authority, he could assure the inhabitants that Columbia was safe" (Lucas 1976:39). It was not until Union guns could be heard that authorities began the evacuation of Columbia.

On February 15, 1865, a skirmish was fought between Sherman's Army and the Confederate forces defending Columbia at an earthwork erected by the Confederates in the vicinity of where Old State Road intersects Congaree Creek. On February 16, 1865, the two prongs of Sherman's army met on the west bank of the Congaree River, across from the town of Columbia. There, Sherman met with his wing commanders Slocum and Howard. Slocum was ordered to proceed up the Saluda about 13 miles to Zion Church, where he was to cross and move on to Winnsboro. He was to destroy all railroads and bridges along the way. This maneuver was designed to cut off General Beauregard's evacuation, while Howard's task was the capturing of Columbia (Lucas 1976:72).

Since the Union forces found the Congaree to be swifter and wider than they had previously thought, Howard's men went up the Saluda to the bridge near the Saluda Factory. Finding it destroyed, they crossed the Saluda using a pontoon bridge, which they constructed. Overwhelming Union pressure forced the Confederates to retreat. Since the Broad River Bridge had also been destroyed, another pontoon bridge was ordered to be constructed. After considerable difficulty, a ferry line was constructed. After crossing the river, they encountered considerable resistance. However, with reinforcements they were able to displace the Confederates and take Columbia (Lucas 1976:73-75).

During the occupation, the city was burned at what was determined to be the hands of both Union and Confederate troops (Lucas 1976). Included were several houses in the surrounding county including General Wade Hampton's, Brigadier General W.H. Wallace's, and a Mrs. Stark's house (Wallace 1951:551).

POSTBELLUM AND MODERN PERIOD

After the Civil War, most planters used the tenant farming/sharecropping system. Most modern researchers divide Southern farm tenancy into the three broad categories that came to be recognized by the U.S. Census by the end of this era, and these are the categories that will be used here. They are: 1) sharecropper or cropper; 2) share tenant or share renter; and 3) cash
tenant or cash renter. It is worth noting that these three categories were fairly well established by the 1900s, but were not so well-defined in 1880, when rent arrangements were much more fluid and the range of tenant possibilities more broad-based. Nonetheless, these three categories are basically accurate, even in the early phase of tenant farming that followed the Civil War (Aiken 1998:29-33).

In the South, the number of tenant farms continued to rise throughout the same period, from 553,848 in 1880, to 1,591,121 in 1920. The greatest 10-year jump was again from 1890 to 1900, from 706,343 to 1,231,144 (the smallest was between 1910 and 1920: from 1,536,752 to 1,591,121). It is also worth noting that tenancy became epidemic whenever cash crops were involved, especially tobacco and cotton. Alternatively, investment crops, such as fruit tree, dairy, and livestock farms, remained the domain of owner-operators (Goldenweiser and Truesdell 1924:26, 33). By the turn of the century, Richland County had ten cotton mills, including the nearby Granby and Olympia cotton mills (Watson 1907:460-461). The boll weevil spread into the area by 1922, but it appears to have had only a minor impact on the practice of tenancy. State officials noted that although many tenants left, the lands they cultivated were marginally productive and had not been skillfully tilled (Anonymous 1927:20-12).

By the mid-twentieth century, the region had a notable drop in both population and cotton acreage. One of the reasons for this decline was the demise of tenancy. Many tenants had migrated north or were pushed off the land under the New Deal crop-reduction program (Kovacik and Winberry 1987).

Today, the area is primarily occupied by industries and manufacturers because of the accessibility to Interstate 77. Residential development occurs along parts of Shop Road and Bluff Road and contains the African American communities of Arthurtown, Taylors, and Little Camden. In addition, there are new developments, such as apartment and condominium complexes, closer to the University of South Carolina Stadium.
IV. METHODS

BACKGROUND RESEARCH

Background research consisted of an examination of the state site files, the National Register files, and standing structure files on record at the South Carolina Institute of Archaeology and Anthropology (SCIAA) as well as the South Carolina Department of Archives and History (SCDAH). No archaeological or architectural resources had been recorded for the portion of the study area outside of the previously surveyed proposed State Farmer’s Market. Within the previously surveyed area, two sites (38RD1318 and 38RD1319) were identified during survey. Of those, 38RD1318 was determined not eligible and 38RD1319 was recommended as potentially eligible for inclusion in the NRHP. Evaluative testing of this relatively small Early Woodland Thom’s Creek/Refuge site, indicated that the cultural material had been completely plowed out and there were no surviving features that could yield significant data. The site was determined not eligible for the NRHP (Adams and Warhop 2007).

The Jaeger Company had completed an intensive architectural survey of areas of Lower Richland County in 1993 (Jaeger 1993). None of the eligible resources discovered in this survey were found to be within the project site. However, one eligible resource – the Reeder Point School – is located on the north side of Bluff Road between Amick Lane and Carswell Drive about 400 feet northwest of the edge of the project area. The school was built in 1915 and is eligible under the theme “Ethnic Heritage/Black, Education.”

In addition, historic maps and area histories were examined in order to identify any potential historic occupations. The results of this cartographic research are presented either in the cultural overview in this report or in the site descriptions.

FIELD METHODS

The field methods consisted primarily of surface and subsurface survey using 30-meter interval transects of 30-meter interval shovel tests. When sites were identified, either by shovel testing or surface inspection, further tests were used to obtain data on site boundaries, artifact quantity and diversity, site integrity, and temporal affiliation. Additional tests consisted of 15-, 10-, or 5-meter interval shovel tests in a cruciform or modified grid pattern from the center of the site until two consecutive negative tests were found in each direction.
The information required for completion of SCIAA site forms was collected and photographs were taken, if warranted in the opinion of the field director. An archaeological site was defined as three or more surface artifacts of the same broad time period (historic and prehistoric) or two or more positive shovel tests (regardless of artifact count). Modern garbage (dating to the past 50 years) was disregarded unless associated with earlier remains.

All soils from shovel tests were screened through 0.25-inch mesh hardware cloth, with each test numbered sequentially. Each test measured about 30 centimeters in diameter and was taken to sterile subsoil. All cultural remains were collected except for shell, mortar, and brick, which was quantified in the field and discarded. Notes were maintained for profiles at any sites encountered.

LABORATORY ANALYSIS

All recovered artifacts were transported to the Stone Mountain, Georgia laboratory facilities of New South Associates, Inc., where they were washed, cataloged, and analyzed. Analysis included cleaning, identifying, analyzing, cataloging, and preparing for curation all artifacts to the standards required by SCIAA. Distinct provenience numbers were assigned to each shovel test and surface collection point. Artifacts from each provenience were divided by class and type, and assigned a catalog number.

Prehistoric lithics were analyzed by raw material type and stage of reduction (e.g., primary, secondary, interior, thinning and shatter). These artifacts were cataloged according to criteria developed by New South Associates based on techno-functional and raw material type. The focus of the laboratory analysis was to determine the occupational span, likely function, and degree of artifact preservation at each site under study. The assignment of artifacts to cultural periods is based here on the typological criteria established by Justice (1987), Coe (1964), Oliver (1985), and Keel (1976).

Historic artifacts were cataloged using a database developed by New South Associates for 4th Dimension Software. Historic remains were identified using sources such as South (1977), Hume (2001), and Brown (1983) for ceramics, Nelson (1968) for nails, Jones and Sullivan (1985) for bottle glass, and other sources for various other artifact categories.

CURATION

New South Associates provides temporary storage for all records and artifacts, which will be turned over to SCIAA for final curation. Artifacts, photographs, and notes will be prepared using their standards.
NATIONAL REGISTER OF HISTORIC PLACES (NRHP) EVALUATION

Archaeological sites are evaluated based on criteria for NRHP eligibility specified in the Department of Interior Regulations 36 CFR Part 60: National Register of Historic Places. Cultural resources can be defined as significant if they “possess integrity of location, design, setting, materials, workmanship, feeling, and association,” and if they:

A) Are associated with events that have made a significant contribution to the broad pattern of history; or

B) Are associated with the lives of persons significant in the past;

C) Embody the distinctive characteristics of a type, period, or method of construction, or represent the work of a master, possess high artistic values, or represent a significant and distinguishable entity whose components may lack individual distinction; or,

D) Have yielded, or may be likely to yield, information important in prehistory or history.

Criteria A, B and C are usually applied to architectural resources. Archaeological sites are generally evaluated relative to Criterion D. The National Park Service (National Park Service [NPS] 1995:21) defines two requirements for archaeological sites to be eligible under Criterion D: the site must have, or have had, information to contribute to our understanding of human history or prehistory, and the information must be considered important. Furthermore, the site must have “been used as a source of data and contains more, as yet unretrieved, data” (NPS 1995:46).
V. RESULTS AND RECOMMENDATIONS

As previously noted the survey of the 199-acre proposed State Farmers’ Market site identified two archaeological sites (38RD1318 and 38RD1319), which have been determined not eligible for the NRHP (Adams 2007; Adams and Warhop 2007).

During the survey of the remaining 300+- acres, seven archaeological sites were identified. They are summarized below in Table 1. All seven sites are recommended as not eligible for inclusion in the NRHP under Criterion D. In addition, five isolated finds were recorded. These finds are not further discussed but are summarized in Table 2. Please see Appendix A for more information. No architectural resources were encountered.

Table 1. Identified Sites within the Study Area

<table>
<thead>
<tr>
<th>Site #</th>
<th>Components</th>
<th>Size (m)</th>
<th>Depth (cm)</th>
<th>Eligibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>38RD1389</td>
<td>Woodland Scatter; Early to Mid Twentieth-Century Farmstead</td>
<td>195x120</td>
<td>20</td>
<td>Not Eligible</td>
</tr>
<tr>
<td>38RD1390</td>
<td>Woodland Scatter</td>
<td>35x10</td>
<td>25</td>
<td>Not Eligible</td>
</tr>
<tr>
<td>38RD1391</td>
<td>Non-diagnostic Lithic Scatter</td>
<td>60x45</td>
<td>20</td>
<td>Not Eligible</td>
</tr>
<tr>
<td>38RD1392</td>
<td>Woodland Scatter</td>
<td>35x35</td>
<td>20</td>
<td>Not Eligible</td>
</tr>
<tr>
<td>38RD1393</td>
<td>Non-diagnostic Lithic Scatter/Historic Scatter</td>
<td>25x25</td>
<td>20</td>
<td>Not Eligible</td>
</tr>
<tr>
<td>38RD1394</td>
<td>Late Nineteenth- to Early Twentieth-Century Historic Scatter</td>
<td>30x20</td>
<td>10</td>
<td>Not Eligible</td>
</tr>
<tr>
<td>38RD1395</td>
<td>Late Nineteenth- to Early Twentieth-Century Farmstead</td>
<td>45x30</td>
<td>35</td>
<td>Not Eligible</td>
</tr>
</tbody>
</table>

Table 2. Identified Isolated Finds

<table>
<thead>
<tr>
<th>IF #</th>
<th>Artifacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find 1</td>
<td>Quartz Biface Fragment</td>
</tr>
<tr>
<td>Find 2</td>
<td>Quartz Flake Fragment; Flat Glass</td>
</tr>
<tr>
<td>Find 9</td>
<td>Quartz Flake</td>
</tr>
<tr>
<td>Find 10</td>
<td>Quartz Flake</td>
</tr>
<tr>
<td>Find 11</td>
<td>Quartz Flake</td>
</tr>
</tbody>
</table>
Site 38RD1389 is a Woodland period prehistoric scatter and a terminal nineteenth- to mid-twentieth-century farmstead located on a ridge sideslope on the north side of Longview Road (see Figure 2). The site limits were defined to the north and east by negative shovel tests and to the south and west by surface visibility and the project boundary. The shovel testing and surface survey indicated the presence of two clusters of historic material, which correspond with what appears to be two houses (one owner, one tenant) on the 1940 County highway map (Figure 5). In addition, a scatter of prehistoric material was also recovered. Overall the site was 195x120 meters in size.

Surface visibility was very good and diagnostic artifacts were collected from a dirt road that surrounds the site and from the ground surface. Shovel tests revealed a soil profile generally consisting of 20 centimeters of grayish brown (10YR5/2) loamy sand plow zone overlying brownish yellow (10YR6/6) sandy clay loam.

Of the 54 shovel tests excavated at 15- and 30-meter intervals, 16 yielded artifacts. They were confined to the plow zone. Prehistoric remains consisted of a quartz biface, one piece of quartz shatter, one rhyolite flake, and one unidentifiable plain sand tempered sherd. As previously mentioned, the historic materials were concentrated in two locations. Locus 1 is at the northern end of the site, whereas Locus 2 is situated on the southeast end. There is a light scatter of surface material between these two loci.

Locus 1 historic artifacts consisted of five clear container glass, three amber container glass, four brick fragments, one piece of barbed wire, and one unidentifiable piece of iron. Of particular interest was a fragment of a jar or mug base labeled “McNicol China; U.S.Q.M.C; W-431-QM-4631 O.I. 5209…MAR 20, 1941”. This was dinnerware made for the United States Quartermaster Corps.

Locus 2 historic artifacts included nine pieces of clear container glass, two pieces of aqua glass, one piece of milk glass, two pieces of amethyst colored glass, two green container glass, and a screw top canning jar fragment. Ceramics included one piece of unidentified porcelain, two pieces of institutional ironstone (tan body with blue underglazed print), two green transfer printed whitewares, two alkaline glazed stonewares, and one plain whiteware. Other artifacts included one piece of coal, one brick fragment, one piece of asphalt roofing, three unidentifiable nails, and nine pieces of unidentified corroded iron. The most temporally sensitive artifact is the amethyst colored glass, which dates from between the last decade of the nineteenth century and the beginning of the U.S. entry into World War I (Huggins 1997).
Figure 5.
Site 38RD1389 Sketch Map with the 1940 County Highway Map Inset

Source: Richland County 1940
Damage to the site is relatively severe, including erosion and cultivation. In particular, there are large holes in the ground where landscape trees have been extracted (Figure 6). These holes are common throughout the site. Due to the shallowness of the deposits, damage from cultivation, and the absence of intact structural features, 38RD1389 cannot yield any information important to history of prehistory of Lower Richland County. Therefore, the site is recommended as not eligible for inclusion in the NRHP.

38RD1390

Site 38RD1390 is a Woodland period prehistoric scatter situated on a toe slope overlooking Reeder Point Branch (see Figure 2). The site limits were defined to the north and west by swamp and to the south and east by negative shovel tests. The shovel testing indicates that the site measures approximately 35x10 meters in size (Figure 7).

Surface visibility was moderately good, but no surface remains were identified. Shovel tests revealed a soil profile generally consisting of 25 centimeters of grayish brown (10YR 5/2) loamy sand plow zone overlying brownish yellow (10YR 6/6) sandy clay loam.

Of the 12 shovel tests excavated at 10-meter intervals, three contained artifacts. Artifacts were confined to the plow zone. They consisted of one piece of quartz shatter, two rhyolite flakes, one eroded medium sand tempered sherd, and one plain very coarse sand tempered sherd. None of these artifacts were diagnostic to a particular subperiod, but probably date to sometime during the Woodland period, based on the prehistoric sherd.

Damage to the site includes erosion and cultivation. Of particular note, there are large holes in the ground where landscape trees have been extracted. Due to the shallowness of the deposits, damage from cultivation, and the absence of intact cultural levels, 38RD1390 cannot yield any information important to the prehistory of Lower Richland County. Therefore, the site is recommended as not eligible for inclusion in the NRHP.

38RD1391

Site 38RD1391 is a non-diagnostic lithic scatter situated on a toe slope overlooking Reeder Point Branch (see Figure 2). The site limits were defined to the north and west by swamp and to the south and east by negative shovel tests. The shovel testing indicates that the site measures approximately 60x45 meters in size (Figure 8).
Figure 6.
Photograph of 38RD1389 Showing Damage from Landscape Tree Extraction
Figure 7. Sketch Map of Site 38RD1390

- Positive Shovel Test
- Negative Shovel Test
- Shovel Test Not Dug
- Site Boundary
- Dirt Road

Legend:

0 20 Meters

North
Figure 8.
Sketch Map of Site 38RD1391
Surface visibility was very good at the southern end of the site and a grab surface collection was made. Shovel tests revealed a soil profile generally consisting of 20 centimeters of grayish brown (10YR 5/2) loamy sand plow zone overlying brownish yellow (10YR 6/6) sandy clay loam.

Of the 21 shovel tests excavated at 10-meter intervals, three yielded artifacts. These artifacts were confined to the plow zone. They consisted of five pieces of quartz angular debris and 13 quartz flakes. Only five of these came from shovel tests.

Damage to the site includes erosion and cultivation. In addition, there are large holes in the ground where landscape trees have been extracted. These holes are common throughout the site. Due to the shallowness of the deposits, damage from cultivation, and the absence of intact cultural levels, 38RD1391 cannot yield any information important to the prehistory of Lower Richland County. Therefore, the site is recommended as not eligible for inclusion in the NRHP.

38RD1392

Site 38RD1392 is a Woodland scatter situated on a toe slope overlooking Reeder Point Branch (see Figure 2). The site limits were defined to the north and west by swamp, to the south by negative shovel tests, and to the east by a drainage. The shovel testing indicates that the site measures approximately 35x35 meters in size (Figure 9).

Surface visibility was poor at the site and no collection was made. Shovel tests revealed a soil profile generally consisting of 20 centimeters of grayish brown (10YR 5/2) loamy sand plow zone overlying brownish yellow (10YR 6/6) sandy clay loam.

Of the 13 shovel tests excavated at 10-15-meter intervals, four yielded artifacts, which were confined to the plow zone. They consisted of three quartz flakes, one eroded very coarse sand tempered sherd, and three residual sherds. None of the sherds were diagnostic to a subperiod, but likely date to the Woodland period.

Damage to the site includes erosion and cultivation. This is in an area that has not been subjected to the planting of landscape trees, but at least a portion of the site was once covered in live kudzu, suggesting that erosion was a problem in this area. Due to the shallowness of the deposits, damage from cultivation, and the absence of intact cultural levels, 38RD1392 cannot yield any information important to the prehistory of Lower Richland County. Therefore, the site is recommended as not eligible for inclusion in the NRHP.
Figure 9.
Sketch Map of Site 38RD1392
38RD1393

Site 38RD1393 is a non-diagnostic lithic scatter and isolated historic find situated on a toe slope overlooking a drainage to Reeder Point Branch (see Figure 2). The site limits were defined to the north, south, and east by negative shovel tests and to the west by steep slope to a drainage. An occupied mobile home is situated along the eastern edge of the site and there is a dirt driveway located within the site. The shovel testing indicates that the site measures approximately 25x25 meters in size (Figure 10).

Surface visibility was good within the driveway, where one historic artifact was found. Shovel tests revealed a soil profile generally consisting of 20 centimeters of grayish brown (10YR 5/2) loamy sand plow zone overlying brownish yellow (10YR 6/6) sandy clay loam. Of the 11 shovel tests excavated, three yielded artifacts. These artifacts were confined to the top stratum. They consisted of four quartz flakes, five pieces of quartz shatter, and one unidentifiable tan/brown historic ceramic. One surface artifact, a ball clay stem of a tobacco pipe, was collected.

Damage to the site includes erosion, as well as construction of a driveway, and perhaps placement of utilities for the mobile home. Due to the shallowness of the deposits, damage from the driveway and utilities, and the absence of intact cultural levels, 38RD1393 cannot yield any information important to the prehistory of Lower Richland County. The historic component consists of only two artifacts and, therefore, is an isolated component within the site. Site 38RD1393 is recommended as not eligible for inclusion in the NRHP.

38RD1394

Site 38RD1394 is a probable twentieth-century historic scatter situated on the edge of a drainage to Reeder Point Branch (see Figure 2). The site limits were defined by negative shovel tests and the extent of the surface scatter. The surface scatter indicates that the site measures approximately 20x30 meters in size (Figure 11).

Surface visibility was excellent throughout the site. Shovel tests revealed a soil profile generally consisting of 10 centimeters of eroded grayish brown (10YR 5/2) loamy sand plow zone overlying brownish yellow (10YR 6/6) sandy clay loam. None of the nine shovel tests excavated contained artifacts. Three ironstone/whiteware ceramics were collected from the ground surface. There were several fragments of clear bottle glass observed, but these were not collected.
Figure 10.
Sketch Map of Site 38RD1393

- Positive Shovel Test
- Negative Shovel Test
- Surface Find
- Site Boundary
- Driveway

Legend:

0 20 Meters
Figure 11.
Sketch Map of Site 38RD1394

North

- Negative Shovel Test
- Surface Find
- Site Boundary

0 20 Meters
Damage to the site includes erosion, cultivation, and large holes where landscape trees were extracted. Due to these circumstances and the fact that no subsurface artifacts were recovered, 38RD1394 cannot yield any information important to the history of Lower Richland County. The site is recommended as not eligible for inclusion in the NRHP.

38RD1395

Site 38RD1395 is a late nineteenth to early twentieth-century scatter situated on the edge of the Reeder Point Branch Swamp (see Figure 2). This occupation appears to be located near where the 1916 soil survey shows a house. The site limits were defined to the north by negative shovel tests and the extent of the surface scatter, to the west by negative shovel tests, and to the east and south by graveled area that is occupied by an old greenhouse remnant and farm equipment. The shovel testing and surface scatter indicates that the site measures approximately 45x30 meters in size (Figure 12).

Surface visibility was moderately good across the site. Shovel tests revealed a soil profile generally consisting of 35 centimeters of grayish brown (10YR 5/2) loamy sand plow zone overlying brownish yellow (10YR 6/6) sandy clay loam.

Of the eight shovel tests excavated, four yielded artifacts. These artifacts were confined to the top stratum. They, along with those collected from the ground surface, include one piece of brown salt glazed stoneware, one Bristol slipped stoneware (Ginger Beer bottle fragment), four pieces of plain whiteware/ironstone, six pieces of clear container glass, one piece of aqua container glass, one unidentifiable nail fragment, one brick fragment, one possible brass washer, and two pieces of corroded iron. The most temporally sensitive item is the Ginger Beer bottle fragment. These stoneware bottles were manufactured between about 1835 and 1900 (Hume 2001:324), which indicates that the site had its origins in the nineteenth century.

Damage to the site includes erosion, cultivation, and placement of the graveled area over what is probably a portion of the site. Due to these circumstances, 38RD1395 cannot yield any information important to the history of Lower Richland County. The site is recommended as not eligible for inclusion in the NRHP.
Figure 12.
Sketch Map of Site 38RD1395 with 1916 Soil Survey Inset

Source: Richland County 1916
VI. CONCLUSIONS

Of the 500 acres included in the proposed Pineview Industrial Site, 199 were previously surveyed. As a result of that survey, two archaeological sites (38RD1318 and 38RD1319) were identified. Both were determined to be not eligible for inclusion in the NRHP. This current survey examined the remaining 300+/- acres and identified seven archaeological sites. All of them have been heavily damaged by erosion, cultivation, and by use of a portion of the property as a tree nursery. These sites are all recommended as not eligible for inclusion in the NRHP. No architectural resources were encountered. Therefore, no historic properties will be affected by the construction of the Pineview Industrial Site and extension of Shop Road.
REFERENCES CITED

Adams, Natalie

Adams, Natalie and John Cable

Adams, Natalie and Jennifer Warhop

Aiken, Charles S.

Anderson, David G.

Anderson, David G. and Lisa D. O'Steen

Anderson, David G. and Joseph Schuldenrein

Anderson, David G., Charles E. Cantley, and A. Lee Novick

Anonymous

Binford, Lewis

Braun, E. Lucy

Brooks, Mark J. and Richard D. Brooks
1988 The Paleo-Indian Occupation of the Savannah River Valley. Manuscript in possession of the authors.

Brooks, Mark J. and Glen T. Hanson
1987 Late Archaic-Late Woodland Adaptive Stability and Change in the Steel Creek Watershed, South Carolina. Anthropological Studies 6. South Carolina Institute of Archaeology and Anthropology, University of South Carolina, Columbia.
Brooks, Mark J., and J.D. Scurry
1978 *An Intensive Archaeological Survey of Amoco Realty Property in Berkeley County, South Carolina, with a Test of Two Subsistence-Settlement Hypotheses for the Prehistoric Period*. Research Manuscript Series 147. South Carolina Institute of Archaeology and Anthropology, University of South Carolina: Columbia, South Carolina.

Brown, Ann
1983 *Historic Ceramic Typology with Principal Dates of Manufacture and Descriptive Characteristics for Identification*. Deldot Archeology Series 15. Delaware Department of Transportation, Division of Highways, Location and Environmental Studies Office.

Bullen, Ripley P.

Cable, John

Central Midlands Regional Planning Council

Cheves, L. (editor)
1897 The Shaftesbury Papers and Other Records Relating to Carolina and the First Settlement on Ashley River Prior to the Year 1767. Collections of the South Carolina Historical Society V. Charleston.

Chapman, Jefferson
Claggett, Stephen R. and John S. Cable (compilers)

Coe, Joffre L.

Davis, Margaret B.

DeJarnette, David L., E. Kurjack, and J. Cambron

Delcourt, Paul A. and Hazel R. Delcourt

DePratter, Chester B.

Frothingham, E.H. and R.M. Nelson

1944 *South Carolina Forest Resources and Industries.* United States Department of Agriculture, Miscellaneous Publications 522.
Goldenweiser, E. A., and Leon E. Truesdell

Goodyear, Albert C.

Goodyear, Albert C. and Donald J. Colquhoun

1979 Archaeological Investigations at Two Buried Stratified Sites on the Broad and Congaree Rivers in South Carolina. Manuscript on file, South Carolina Institute of Archaeology and Anthropology, University of South Carolina, Columbia.

Goodyear, Albert C., James L. Michie, and Tommy Charles

Griffin, James B.

Groover, Mark D.

Hanson, Glen T. and Chester B. DePratter

Huggins, Phillip K.

Hume, Ivor Noel

Jaeger, Dale
1993 Lower Richland County Historical and Architectural Inventory. The Jaeger Company, Gainesville, Georgia.

Jones, Lewis P.
1971 South Carolina: A Synoptic History for Laymen. Sandlapper Publishing Co., Inc. Orangeburg, South Carolina

Jones, Olive and Catherine Sullivan

Keel, Bennie

Kelly, Robert L. and Lawrence C. Todd

Knox, J.C.

Kovacik, Charles F. and John J. Winberry
Lawrence, Carl B.

Lefler, Hugh

Lewis, Thomas M.N. and Madeline K. Kneburg
1961 *Eva: An Archaic Site.* University of Tennessee Press, Knoxville.

Lucas, Marion B.
1976 *Sherman and the Burning of Columbia.* Texas A&M University Press, College Station.

Meriwether, Robert L.

Michie, James L.

1977 *The Late Pleistocene Human Occupation of South Carolina.* Unpublished Honor's Thesis, Department of Anthropology, University of South Carolina, Columbia.

1989 *The Discovery of Old Fort Congaree.* Research Manuscript Series 208. South Carolina Institute of Archaeology and Anthropology, University of South Carolina, Columbia.

Mills, Robert
Morse, Dan F.

National Parks Service (NPS)

Nelson, Lee

Oliver, Billy

Sassaman, Kenneth E.

1983 *Middle and Late Archaic Settlement in the South Carolina Piedmont.* M.A. thesis, Department of Anthropology, University of South Carolina, Columbia.

Sassaman, Kenneth E. and David Anderson

Sassaman, Kenneth E., Mark J. Brooks, Glen T. Hanson, and David G. Anderson

Smith, Bruce D.

South, Stanley

Stoltman, James B.

Swanton, John R.

Taylor, Richard L. and Marion F. Smith (assemblers)

Terry, George

Townsend, Leah

Trinkley, Michael
Wallace, David D.

Watson, E.J.

1907 *Handbook of South Carolina*. The State Department of Agriculture, Commerce, and Immigration, Columbia, SC. The State Company.

Watts, W.A.

Williams, Stephen B. (editor)

Wood, Peter

APPENDIX A: SPECIMEN CATALOG
County: Richland County
State: South Carolina
Project: Shop Road Survey (2013)

<table>
<thead>
<tr>
<th>Field Site #</th>
<th>State Site #</th>
<th>Field Bag #</th>
<th>Excavation Unit</th>
<th>Horizontal Location</th>
<th>Vertical Location</th>
<th>Count</th>
<th>Artifact Description</th>
<th>Field Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 38RD1389</td>
<td>3 38RD1389</td>
<td>3 38RD1389</td>
<td>Transect 23, STP 2</td>
<td>Locus 1</td>
<td>0-30</td>
<td>1</td>
<td>Iron/ Steel, Unidentified/ Corroded</td>
<td>2/4/13</td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>3 38RD1389</td>
<td>3 38RD1389</td>
<td>Transect 23, STP 2</td>
<td>Locus 1</td>
<td>0-30</td>
<td>1</td>
<td>Barbed Wire</td>
<td>2/4/13</td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>4 38RD1389</td>
<td>4 38RD1389</td>
<td>Transect 23, STP 5</td>
<td>Locus 1</td>
<td>Surface</td>
<td>1</td>
<td>Quartz, Angular Debris</td>
<td>2/4/13</td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>4 38RD1389</td>
<td>4 38RD1389</td>
<td>Transect 23, STP 5</td>
<td>Locus 1</td>
<td>Surface</td>
<td>1</td>
<td>Quartz, Biface, Complete</td>
<td>2/4/13</td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>4 38RD1389</td>
<td>5 38RD1389</td>
<td>Transect 23, STP 5</td>
<td>Locus 1</td>
<td>Surface</td>
<td>1</td>
<td>Porphyritic Rhyolite, Flake-General, Complete, n=2 mends</td>
<td>2/4/13</td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>5 38RD1389</td>
<td>5 38RD1389</td>
<td>Transect 24, STP 5</td>
<td>Locus 1</td>
<td>0-20</td>
<td>2</td>
<td>Container Glass, Clear</td>
<td>2/4/13</td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>5 38RD1389</td>
<td>5 38RD1389</td>
<td>Transect 24, STP 5</td>
<td>Locus 1</td>
<td>0-20</td>
<td>2</td>
<td>Container Glass, Green</td>
<td>2/4/13</td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>5 38RD1389</td>
<td>5 38RD1389</td>
<td>Transect 24, STP 5</td>
<td>Locus 1</td>
<td>0-20</td>
<td>2</td>
<td>Container Glass, Amber</td>
<td>2/4/13</td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>5 38RD1389</td>
<td>5 38RD1389</td>
<td>Transect 24, STP 5</td>
<td>Locus 1</td>
<td>0-20</td>
<td>1</td>
<td>Brick, Machine-Made</td>
<td>2/4/13</td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>6 38RD1389</td>
<td>6 38RD1389</td>
<td>Transect 24, STP 6</td>
<td>Locus 1</td>
<td>0-30</td>
<td>1</td>
<td>Brick, Machine-Made</td>
<td>2/4/13</td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>6 38RD1389</td>
<td>6 38RD1389</td>
<td>Transect 24, STP 6</td>
<td>Locus 1</td>
<td>0-30</td>
<td>1</td>
<td>Iron/ Steel, Unidentified/ Corroded</td>
<td>2/4/13</td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>6 38RD1389</td>
<td>6 38RD1389</td>
<td>Transect 24, STP 6</td>
<td>Locus 1</td>
<td>0-30</td>
<td>1</td>
<td>Brick, Unidentified, burned</td>
<td>2/4/13</td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>7 38RD1389</td>
<td>7 38RD1389</td>
<td>Transect 25, STP 4</td>
<td>Locus 1</td>
<td>0-15</td>
<td>1</td>
<td>Body Sherd, Sand-Coarse Temper, Plain Exterior, Unidentified</td>
<td>2/4/13</td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>8 38RD1389</td>
<td>8 38RD1389</td>
<td>Transect 25, STP 6</td>
<td>Locus 1</td>
<td>Level 1, 0-35</td>
<td>1</td>
<td>Container Glass, Amber</td>
<td>2/4/13</td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>8 38RD1389</td>
<td>8 38RD1389</td>
<td>Transect 25, STP 6</td>
<td>Locus 1</td>
<td>Level 1, 0-35</td>
<td>3</td>
<td>Container Glass, Clear</td>
<td>2/4/13</td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>8 38RD1389</td>
<td>8 38RD1389</td>
<td>Transect 25, STP 6</td>
<td>Locus 1</td>
<td>Level 1, 0-35</td>
<td>1</td>
<td>Brick, Unidentified</td>
<td>2/4/13</td>
</tr>
<tr>
<td>Field Site #</td>
<td>State Site #</td>
<td>Field Bag #</td>
<td>Excavation Unit</td>
<td>Horizontal Location</td>
<td>Vertical Location</td>
<td>Count</td>
<td>Artifact Description</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>------------------</td>
<td>-------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>38RD1389</td>
<td>10</td>
<td>Transect 22, STP 2</td>
<td>Locus 2</td>
<td>1</td>
<td>Container Glass, Aqua</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>38RD1389</td>
<td>11</td>
<td>Transect 22, STP 4</td>
<td>Locus 2, N440 E440</td>
<td>1</td>
<td>Container Glass, Clear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>38RD1389</td>
<td>12</td>
<td>Transect 23, STP 1</td>
<td>Locus 2, 0-30</td>
<td>1</td>
<td>Container Glass, Clear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>38RD1389</td>
<td>12</td>
<td>Transect 23, STP 1</td>
<td>Locus 2, 0-30</td>
<td>1</td>
<td>Container Glass, Aqua</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>38RD1389</td>
<td>13</td>
<td>Locus 2, Surface 1</td>
<td>Container Glass, Milk Glass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>38RD1389</td>
<td>13</td>
<td>Locus 2, Surface 2</td>
<td>Ironstone, Hotel Ware (Institutional), tan body with underglaze blue print</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>38RD1389</td>
<td>13</td>
<td>Locus 2, Surface 2</td>
<td>Whiteware, Transfer Print Red/Green/Purple/Black Or Brown, green</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>38RD1389</td>
<td>13</td>
<td>Locus 2, Surface 2</td>
<td>Container Glass, Amethyst Color</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>38RD1389</td>
<td>13</td>
<td>Locus 2, Surface 2</td>
<td>Stoneware, Alkaline Glazed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>38RD1389</td>
<td>14</td>
<td>Locus 2, N575 E500</td>
<td>0-20</td>
<td>1</td>
<td>Container Glass, Clear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>38RD1389</td>
<td>15</td>
<td>Locus 2, N500 E485</td>
<td>0-20</td>
<td>1</td>
<td>Canning Jar Glass, Mason Screw Cap</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>38RD1389</td>
<td>16</td>
<td>Locus 2, N485 E500</td>
<td>0-35</td>
<td>1</td>
<td>Coal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>38RD1389</td>
<td>16</td>
<td>Locus 2, N485 E500</td>
<td>0-35</td>
<td>2</td>
<td>Container Glass, Green</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>38RD1389</td>
<td>16</td>
<td>Locus 2, N485 E500</td>
<td>0-35</td>
<td>4</td>
<td>Container Glass, Clear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>38RD1389</td>
<td>16</td>
<td>Locus 2, N485 E500</td>
<td>0-35</td>
<td>1</td>
<td>Brick, Unidentified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Site #</td>
<td>State Site #</td>
<td>Field Bag #</td>
<td>Excavation Unit</td>
<td>Horizontal Location</td>
<td>Vertical Location</td>
<td>Count</td>
<td>Artifact Description</td>
<td>Field Date</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-------</td>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>16</td>
<td></td>
<td>Locus 2, N485 E500</td>
<td>0-35</td>
<td>1</td>
<td>Asphalt Roofing</td>
<td>2/4/13</td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>16</td>
<td></td>
<td>Locus 2, N485 E500</td>
<td>0-35</td>
<td>1</td>
<td>Container Glass, Aqua</td>
<td>2/4/13</td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>16</td>
<td></td>
<td>Locus 2, N485 E500</td>
<td>0-35</td>
<td>3</td>
<td>Nail, Unidentified Fragment</td>
<td>2/4/13</td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>16</td>
<td></td>
<td>Locus 2, N485 E500</td>
<td>0-35</td>
<td>8</td>
<td>Iron/ Steel, Unidentified/ Corroded</td>
<td>2/4/13</td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>17</td>
<td></td>
<td>Locus 2, N425 E410</td>
<td>Surface</td>
<td>1</td>
<td>Whiteware, Plain, base fragment</td>
<td>2/4/13</td>
<td></td>
</tr>
<tr>
<td>3 38RD1389</td>
<td>18</td>
<td>Transect 32, STP 9</td>
<td>Locus 2, N395 E440</td>
<td>0-10</td>
<td>1</td>
<td>Iron/ Steel, Unidentified/ Corroded</td>
<td>2/4/13</td>
<td></td>
</tr>
<tr>
<td>4 38RD1390</td>
<td>19</td>
<td>STP 9</td>
<td>Locus 2, N485 E500</td>
<td>0-35</td>
<td>1</td>
<td>Quartz, Angular Debris</td>
<td>2/5/13</td>
<td></td>
</tr>
<tr>
<td>4 38RD1390</td>
<td>19</td>
<td>STP 9</td>
<td>Locus 2, N485 E500</td>
<td>0-35</td>
<td>1</td>
<td>Body Sherd, Sand-Medium Temper, Eroded Exterior</td>
<td>2/5/13</td>
<td></td>
</tr>
<tr>
<td>4 38RD1390</td>
<td>20</td>
<td>N500 E490</td>
<td>0-60</td>
<td>2</td>
<td>Rhyolite, Flake-General, Complete</td>
<td>2/5/13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 38RD1390</td>
<td>21</td>
<td>N500 E470</td>
<td>0-60</td>
<td>1</td>
<td>Body Sherd, Sand-Very Coarse Temper, Plain Exterior, Unidentified</td>
<td>2/5/13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 38RD1391</td>
<td>22</td>
<td>Transect 37, STP 5</td>
<td>N500 E500</td>
<td>20-30</td>
<td>2</td>
<td>Quartz, Flake-General</td>
<td>2/5/13</td>
<td></td>
</tr>
<tr>
<td>5 38RD1391</td>
<td>23</td>
<td>STP 5</td>
<td>N500 E500</td>
<td>0-10</td>
<td>1</td>
<td>Quartz, Angle Debris</td>
<td>2/5/13</td>
<td></td>
</tr>
<tr>
<td>5 38RD1391</td>
<td>23</td>
<td>Surface</td>
<td>N460 E500</td>
<td>Level 1, 0-10</td>
<td>1</td>
<td>Quartz, Flake-General, Complete</td>
<td>2/5/13</td>
<td></td>
</tr>
<tr>
<td>5 38RD1391</td>
<td>24</td>
<td>Surface</td>
<td>N460 E510</td>
<td>0-50</td>
<td>2</td>
<td>Quartz, Angle Debris</td>
<td>2/5/13</td>
<td></td>
</tr>
<tr>
<td>6 38RD1392</td>
<td>27</td>
<td>STP 2</td>
<td>N515 E470</td>
<td>Level 1, 0-15</td>
<td>2</td>
<td>Quartz, Flake-General, Complete</td>
<td>2/5/13</td>
<td></td>
</tr>
<tr>
<td>6 38RD1392</td>
<td>28</td>
<td>N515 E460</td>
<td>1 Residual Sherd</td>
<td>2/15/13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 38RD1392</td>
<td>29</td>
<td>N525 E470</td>
<td>Level 1, 0-10</td>
<td>1</td>
<td>Quartz, Flake-Fragment</td>
<td>2/5/13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Site #</td>
<td>State Site #</td>
<td>Field Bag #</td>
<td>Excavation Unit</td>
<td>Horizontal Location</td>
<td>Vertical Location</td>
<td>Count</td>
<td>Artifact Description</td>
<td>Field Date</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>------------------</td>
<td>-------</td>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>6</td>
<td>38RD1392</td>
<td>30</td>
<td>N535 E470</td>
<td>Level 1, 0-20</td>
<td>2</td>
<td>Residual Sherd</td>
<td>2/5/13</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>38RD1393</td>
<td>31</td>
<td>Transect 41, STP 3</td>
<td>N500 E500</td>
<td>25-75</td>
<td>4</td>
<td>Quartz, Angular Debris</td>
<td>2/5/13</td>
</tr>
<tr>
<td>7</td>
<td>38RD1393</td>
<td>31</td>
<td>Transect 41, STP 3</td>
<td>N500 E500</td>
<td>25-75</td>
<td>1</td>
<td>Quartz, Flake-Fragment</td>
<td>2/5/13</td>
</tr>
<tr>
<td>7</td>
<td>38RD1393</td>
<td>31</td>
<td>Transect 41, STP 3</td>
<td>N500 E500</td>
<td>25-75</td>
<td>3</td>
<td>Quartz, Flake-General</td>
<td>2/5/13</td>
</tr>
<tr>
<td>7</td>
<td>38RD1393</td>
<td>32</td>
<td>Transect 42, STP 4</td>
<td>Level 1, 0-25</td>
<td></td>
<td>1</td>
<td>Quartz, Angular Debris</td>
<td>2/5/13</td>
</tr>
<tr>
<td>7</td>
<td>38RD1393</td>
<td>33</td>
<td>Surface</td>
<td></td>
<td></td>
<td>1</td>
<td>Ball Clay Stem Fragment, Unmeasured</td>
<td>2/5/13</td>
</tr>
<tr>
<td>7</td>
<td>38RD1393</td>
<td>34</td>
<td>N500 E480</td>
<td>Oct-70</td>
<td>1</td>
<td>Ceramics, Unidentifiable, tan/ brown body</td>
<td>2/5/13</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>38RD1393</td>
<td>35</td>
<td>N480 E500</td>
<td>10-May</td>
<td>4</td>
<td>Container Glass, Amethyst Color</td>
<td>2/5/13</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>38RD1393</td>
<td>35</td>
<td>N480 E500</td>
<td>10-May</td>
<td>1</td>
<td>Quartz, Flake-General</td>
<td>2/5/13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>38RD1394</td>
<td>36</td>
<td>Surface</td>
<td></td>
<td>1</td>
<td>Ironstone, Plain</td>
<td>2/6/13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>38RD1394</td>
<td>36</td>
<td>Surface</td>
<td></td>
<td>2</td>
<td>Whiteware, Plain</td>
<td>2/6/13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>38RD1395</td>
<td>40</td>
<td>Transect 66, STP 2</td>
<td>N500 E500</td>
<td>Level 1, 0-30</td>
<td>1</td>
<td>Stoneware, Brown Salt Glazed, Unidentified</td>
<td>2/7/13</td>
</tr>
<tr>
<td>12</td>
<td>38RD1395</td>
<td>41</td>
<td>Surface</td>
<td></td>
<td>3</td>
<td>Whiteware, Plain</td>
<td>2/7/13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>38RD1395</td>
<td>41</td>
<td>Surface</td>
<td></td>
<td>1</td>
<td>Stoneware, Bristol Slipped</td>
<td>2/7/13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>38RD1395</td>
<td>42</td>
<td>N500 E490</td>
<td>0-25</td>
<td>1</td>
<td>Ironstone, Plain</td>
<td>2/7/13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>38RD1395</td>
<td>43</td>
<td>N510 E500</td>
<td>Level 1, 0-30</td>
<td>2</td>
<td>Container Glass, Clear</td>
<td>2/7/13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>38RD1395</td>
<td>43</td>
<td>N510 E500</td>
<td>Level 1, 0-30</td>
<td>1</td>
<td>Container Glass, Aqua</td>
<td>2/7/13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>38RD1395</td>
<td>43</td>
<td>N510 E500</td>
<td>Level 1, 0-30</td>
<td>1</td>
<td>Brick, Unidentified</td>
<td>2/7/13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>38RD1395</td>
<td>44</td>
<td>N520 E500</td>
<td>0-35</td>
<td>4</td>
<td>Container Glass, Clear</td>
<td>2/7/13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>38RD1395</td>
<td>44</td>
<td>N520 E500</td>
<td>0-35</td>
<td>1</td>
<td>Metal Object, Miscellaneous, flat brass ring, 3.5 cm diameter; possible washer of some sort</td>
<td>2/7/13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>38RD1395</td>
<td>44</td>
<td>N520 E500</td>
<td>0-35</td>
<td>1</td>
<td>Brick, Unidentified</td>
<td>2/7/13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>38RD1395</td>
<td>44</td>
<td>N520 E500</td>
<td>0-35</td>
<td>1</td>
<td>Nail, Unidentified Fragment</td>
<td>2/7/13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>38RD1395</td>
<td>44</td>
<td>N520 E500</td>
<td>0-35</td>
<td>2</td>
<td>Iron/ Steel, Unidentified/ Corroded</td>
<td>2/7/13</td>
<td></td>
</tr>
<tr>
<td>Field Site #</td>
<td>Field Bag #</td>
<td>Excavation Unit</td>
<td>State Site #</td>
<td>Horizontal Location</td>
<td>Vertical Location</td>
<td>Count</td>
<td>Artifact Description</td>
<td>Field Date</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>-------</td>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>38RD00-IF1</td>
<td>Transect 8, STP 3</td>
<td>1</td>
<td>N500 E500</td>
<td>Surface</td>
<td>1</td>
<td>Quartz, Biface, Fragment</td>
<td>00/00/00</td>
</tr>
<tr>
<td>2</td>
<td>38RD00-IF2</td>
<td>Transect 11, STP 2</td>
<td>2</td>
<td>N500 E500</td>
<td>Level 1, 0-10</td>
<td>1</td>
<td>Glass, Unmeasured Flat</td>
<td>24/11/13</td>
</tr>
<tr>
<td>3</td>
<td>38RD00-IF3</td>
<td>Transect 11, STP 2</td>
<td>2</td>
<td>N500 E500</td>
<td>Level 1, 0-10</td>
<td>1</td>
<td>Quartz, Flake-Fragment</td>
<td>24/11/13</td>
</tr>
<tr>
<td>4</td>
<td>38RD00-IF4</td>
<td>Transect 11, STP 2</td>
<td>2</td>
<td>N500 E500</td>
<td>Surface</td>
<td>1</td>
<td>Quartz, Flake-Fragment</td>
<td>26/11/13</td>
</tr>
<tr>
<td>5</td>
<td>38RD00-IF5</td>
<td>Transect 71, STP 8</td>
<td>11</td>
<td>N500 E500</td>
<td>Surface</td>
<td>1</td>
<td>Quartz, Flake-General</td>
<td>27/11/13</td>
</tr>
</tbody>
</table>

- Field Site #: 1
- Field Bag #: 38RD00-IF1
- Excavation Unit: Transect 8, STP 3
- State Site #: 1
- Horizontal Location: N500 E500
- Vertical Location: Surface
- Count: 1
- Artifact Description: Quartz, Biface, Fragment
- Field Date: 00/00/00

- Field Site #: 2
- Field Bag #: 38RD00-IF2
- Excavation Unit: Transect 11, STP 2
- State Site #: 2
- Horizontal Location: N500 E500
- Vertical Location: Level 1, 0-10
- Count: 1
- Artifact Description: Glass, Unmeasured Flat
- Field Date: 24/11/13

- Field Site #: 3
- Field Bag #: 38RD00-IF3
- Excavation Unit: Transect 11, STP 2
- State Site #: 3
- Horizontal Location: N500 E500
- Vertical Location: Level 1, 0-10
- Count: 1
- Artifact Description: Quartz, Flake-Fragment
- Field Date: 24/11/13

- Field Site #: 4
- Field Bag #: 38RD00-IF4
- Excavation Unit: Transect 11, STP 2
- State Site #: 4
- Horizontal Location: N500 E500
- Vertical Location: Surface
- Count: 1
- Artifact Description: Quartz, Flake-Fragment
- Field Date: 26/11/13

- Field Site #: 5
- Field Bag #: 38RD00-IF5
- Excavation Unit: Transect 71, STP 8
- State Site #: 11
- Horizontal Location: N500 E500
- Vertical Location: Surface
- Count: 1
- Artifact Description: Quartz, Flake-General
- Field Date: 27/11/13